Educational Blog about Anesthesia, Intensive care and Pain management

Steps of Systematic Research

 


Systematic Research follows certain steps that are logical in order.

These steps are:

1- Understanding the nature of the problem to be studied and identifying the related area of knowledge.

2- Reviewing literature to understand how others have approached or dealt with the problem.

3- Collecting data in an organized and controlled manner so as to arrive at valid decisions.

4- Analyzing data appropriate to the problem.

5- Drawing conclusions and making generalizations.

Characteristics of Research:

Research is a process through which we attempt to achieve systematically and with the support of data the answer to a question, the resolution of a problem, or a greater understanding of a phenomenon.

This process has eight distinct characteristics:

Research…

1. Originates with a question or problem.

2. Requires a clear articulation of a goal.

3. Follows a specific plan of procedure.

4. Usually divides the principal problem into more manageable sub-problems.

5. Is guided by the specific research problem, question, or hypothesis.

6. Accepts certain critical assumptions.

7. Requires the collection and interpretation of data in attempting to resolve the problem that

initiated the research.

8. Is by its nature, cyclical; or more exactly, helical.

What is the meaning of Research?

 


The word “research” originated from the old French word “researcher” meaning to search and search again.

It literally implies repeating a search for something and implicitly assumes that the earlier search was not exhaustive and complete in the sense that there is still scope for improvement.

Research in common parlance refers to a search for knowledge.

It may be defined as a scientific and systematic search for pertinent information on a specific topic/area. In fact, research is an art of scientific investigation.

The Advanced Learner’s Dictionary of Current English lays down the meaning of research as “a careful investigation or inquiry, especially through search for new facts in any branch of knowledge”. Redman and Mory define research as “a systematized effort to gain new knowledge”. Some people consider research as a movement, a movement from known to unknown. It is actually a voyage of discovery.

Research is a scientific approach to answering a research question, solving a problem, or generating new knowledge through a systematic and orderly collection, organization, and analysis of information with the ultimate goal of making valuable research in decision-making.

Systematic research in any field of inquiry involves three basic operations:

1. Data collection: It refers to observing, measuring, and recording information.

2. Data Analysis: It refers to arranging and organizing the collected data so that we may be able to find out what their significance is and generalize about them.

3. Report writing: It is an inseparable part and a final outcome of a research study. Its purpose is to convey the information contained in it to the readers or audience.

Anesthetic Considerations for Patients with Liver disease

Anesthetic Considerations for Patients with Liver disease



Preoperative:

1. Assess the Degree of hepatic impairment, Severity, and Hepatic reserve by the Child-Turcotte-Pugh scoring system.

2. AVOID: Premedication, IM injections, Contact with blood or body fluids, unnecessary esophageal instrumentation.

Regional Anesthesia:

-Regional anesthesia might be used when possible in patients with advanced liver disease.

-Coagulopathy (PT & INR) should be considered as a contraindication to some types of regional anesthesia.

-AVOID Epidural a. (Large amounts of amide LAs).

IV Anesthetics:

-Propofol, Ketamine (in hypotensive patients).

Opioids:

-Opioids can also be used successfully in patients with the hepatic disease despite certain pharmacological consequences (decreased clearance and prolonged half-life).

-Fentanyl is considered the opioid of choice because it does not decrease hepatic oxygen and blood supply nor does it prevent increases in hepatic oxygen requirements when used in relatively moderate doses.

-AVOID Morphine (Active metabolite, Prolonged action).

Changed Pharmacokinetics:

-The half-life of lidocaine in patients with liver disease may be increased by more than 300%, for benzodiazepines by more than 100%, etc.

-For drugs binding to albumin, the volume of distribution is decreased and therefore the dose of the drug should be decreased (e.g. sodium pentothal).

Muscle Relaxants:

-Suxamethonium → Prolonged action, Atracurium, Cisatracurium (of choice).

-AVOID Pancuronium, Vecuronium (Hepatic metabolism).

-The volume of distribution of many drugs can be substantially increased (for different reasons, including an increase in gamma globulin and edema), dictating a necessity to increase the first effective dose of the drug.

-However, owing to a decrease in hepatic blood flow and hepatic metabolic and excretory functions, as well as impaired renal function, the clearance of such a drug is decreased, and therefore the effect can be prolonged (e.g. pancuronium).

-Atracurium has a theoretical advantage because its metabolism is not dependent on liver function. Therefore, it is not surprising that the clearance and elimination half-life of atracurium in patients with impaired hepatic and/or renal function is not particularly different from those who have a normal hepato-renal function. However, the volumes of distribution are larger, and, accordingly, the distribution half-lives are shorter in patients with severe hepato-renal dysfunction compared with normal individuals.

-Titration of any relaxant according to the transcutaneous nerve stimulation monitoring is beneficial because the degree of hepatic dysfunction affects the degree of pharmacokinetic disorders.

Inhalational Anesthetics:

-Halothane should be avoided because it leads to the most prominent decrease in hepatic blood flow and oxygen supply and postoperative hepatic dysfunction. In addition, immunologically mediated severe postoperative halothane hepatitis may follow halothane anesthesia.

-Isoflurane seems to be a better choice if an inhalational technique is selected.

-More recently introduced volatile anesthetics, sevoflurane, and desflurane, of them, can be used safely in patients with liver disease, as they preserve hepatic blood flow.

-Nitrous oxide has been used in patients with advanced hepatic disease for many years, and so far has not been incriminated in increased anesthesia-related hepatic postoperative complications. However, a well-known sympathomimetic effect of nitrous oxide and some possibilities of jeopardizing oxygenation render the routine use of nitrous oxide in patients with advanced liver disease undesirable. It is important to remember that long surgical operations under anesthesia with nitrous oxide might result in the accumulation of nitrous oxide in the intestinal lumen with subsequent intestinal distension.

Others:

-Renal function must be maintained by administering proper fluid load (volume and content); (avoid Na+ overload, use glucose-containing solutions for hypoglycemia, albumin 5% is the preferred colloid), and diuretics if needed.

-The parameters of controlled ventilation should be carefully selected to avoid an unnecessary increase in intrathoracic pressure which may impede venous return thereby decreasing cardiac output.

-Monitoring the coagulation state during surgery can be important. The treatment should be based on the results of hematologic monitoring and may include administration of platelets, fresh frozen plasma, cryoprecipitate, and sometimes tranexamic acid.

Rheumatoid Arthritis

 Rheumatoid Arthritis:

A common, autoimmune connective tissue disease, primarily involving joints, but with widespread systemic effects. There is hypergammaglobulinemia, and rheumatoid factors, which are autoantibodies of IgE, IgA, and IgM classes, are present.



Preoperative abnormalities:

1. Articular problems:

-The joint disease involves inflammation, formation of granulation tissue, fibrosis, joint destruction, and deformity. Any joint may be affected. Those of particular concern to the anesthetist is the cervical, the temporomandibular, and the cricoarytenoid joints.

-Airway obstruction can occur from closely adducted, immobile vocal cords, or from laryngeal amyloidosis. Rheumatoid nodules can affect the larynx.

2. Extra-articular problems: occur in more than 50% of patients.

a) Lungs. May be affected by effusions, nodular lesions, diffuse interstitial fibrosis, or Caplan’s syndrome. This is a form of massive pulmonary fibrosis seen in coal miners with rheumatoid arthritis or positive rheumatoid factor, and probably represents an abnormal tissue response to inorganic dust. There may be a restrictive lung defect, with a contribution from reduced chest wall compliance.

b) Kidney. Twenty-five percent of patients eventually die from renal failure. Renal damage may be related to the disease process itself, secondary amyloid disease, or drug treatment.

c) Heart. Is involved in up to 44% of cases. Small pericardial effusions are common but are not usually of clinical significance. Rarely, pericarditis and tamponade may occur, usually in seropositive patients and those with skin nodules. Other problems include endocarditis or left ventricular failure. Occasionally heart valve lesions occur and are of two types; rheumatoid granulomas involving the leaflets and ring, and no granulomatous valvular inflammation with thickening and fibrosis of the leaflets.

d) Blood vessels. A widespread vasculitis can occur. Small arteries and arterioles are often involved, frequently in the presence of relatively disease-free main trunk vessels. Significant ischemia may result, in the actual effects depending on the tissue or organ supplied.

e) Autonomic involvement.

f ) Gastrointestinal. Swallowing problems and dysphagia were found in patients with classical rheumatoid arthritis.

g) Peripheral neuropathy.

3. Chronic anemia, which has been shown to respond to erythropoietin therapy, is common.

Anesthetic problems:

1. Disease of the cervical vertebrae. Cervical involvement, and damage to the cervical spinal cord, have been associated with neck manipulation during anesthesia and sedation. Instability is said to occur in 25% of patients with rheumatoid arthritis. Of these, one-quarter will have no neurological symptoms to alert the physician. The problem of instability is not necessarily confined to those with longstanding diseases.

The commonest lesion is that of atlantoaxial subluxation, although subaxial subluxations may occur in addition. Destruction of bone, and weakening of the ligaments, allow the odontoid peg to migrate backward and upwards, compressing the spinal cord against the posterior arch of the atlas. Thus, the main danger lies in cervical flexion.

The potential dangers of anesthesia and endoscopy have been emphasized. Flexion of the head and reduction in muscle tone may result in cervical cord damage. Dislocation of the odontoid process and spinal cord damage were discovered in a patient undergoing postoperative IPPV in the ITU. It was not known exactly when this had occurred.

2. Cervical instability below the level of a fusion. Those who have previously undergone occipital cervical fusion may develop cervical instability below the level of the original arthrodesis. Occipital-cervical fusion is thought to generate a greater force at the lower cervical level that in turn stresses the unfused facet joints.

3. Laryngeal problems. A constant pattern of laryngeal and tracheal deviation is reported to occur in some patients, particularly those with proximal migration of the odontoid peg. The larynx is tilted forwards, displaced anteriorly and laterally to the left, and the vocal cords are rotated clockwise. Involvement of the larynx in the rheumatoid process is more common than was previously thought. However, fatal airway obstruction occurred following cervical spine fusion, secondary to massive edema in the meso- and hypopharynx.

4. The laryngeal mask airway should not be relied upon to overcome failed tracheal intubation. It was impossible to insert a laryngeal mask airway into a patient with a grade 4 laryngoscopic view. Subsequent cervical X-rays with the head maximally extended showed that the angle between the oral and pharyngeal axes at the back of the tongue was only 70 degrees, compared with 105 degrees in five normal patients. A simulation of different angles using an aluminium plate showed that at an angle less than 90 degrees, the laryngeal mask airway could not be advanced without kinking at the corner.

5. Sleep apneas. Medullary compression associated with a major atlantoaxial subluxation may result in nocturnal oxygen desaturation.

6. Limitation of mouth opening may occur secondary to arthritis of the temporomandibular joints. This is a particular problem in juvenile rheumatoid arthritis.

7. A pericardial effusion and tamponade can be presented as an acute abdominal emergency in patients with seropositive rheumatoid arthritis.

8. Rheumatoid aortic valve involvement may be more rapidly progressive than aortic valve disease from other causes so that there is little time for compensatory hypertrophy of the ventricle to occur. Acute aortic regurgitation caused sudden cardiac failure in a young woman and required urgent valve replacement.

9. Lung disease can result in reduced pulmonary reserve and hypoxia.

10. An increased sensitivity to anesthetic agents may occur.

Management:

1. Clinical assessment of neck and jaw mobility. The Sharp and Purser test gives some indication of cervical spine instability. The patient should be upright, relaxed, and with the neck flexed. With a finger on the spinous process of the axis, the forehead should be pressed backward with the other hand. Normally there is minimal movement. If subluxation is present, the head moves backward as reduction occurs.

2. A lateral view of the cervical spine in flexion and extension will show the distance between the odontoid peg and the posterior border of the anterior arch of the atlas. If subluxation is present, this distance is greater than 3 mm. Frontal views of the odontoid and entire cervical spine have also been suggested.

3. Cervical X-rays of patients who have previously undergone occipital spinal fusions should be carefully examined for evidence of cervical instability at a lower level.

4. Intubation methods. Cervical instability may be an indication of awake fiberoptic intubation with the application of a collar or Crutchfield tongs, to maintain rigidity during surgery. Since spinal instability is usually in flexion, some authors believe that safe tracheal intubation can be achieved under general anesthesia by careful extension of the head, except in the rare instances of posterior atlantoaxial subluxation when fibreoptic intubation is indicated. Emergency control of the airway has been described using a laryngeal mask airway in a patient who developed acute pulmonary edema following occipital-cervical fusion.

5. Deviation of the larynx may make fibreoptic laryngoscopy more difficult in some patients. Examination of the orientation of the larynx by indirect laryngoscopy at preoperative assessment may be helpful. If there is cricoarytenoid involvement, care should be taken with the choice of tracheal tube size and tube insertion. Cricoarytenoid arthritis may occasionally necessitate permanent tracheostomy.

6. Although the use of the laryngeal mask airway is increasingly common, as mentioned above, it cannot always be relied on in patients with severe flexion deformities of the neck.

7. Assessment of pulmonary function and reserve.

8. Examination for other significant complications, such as valvular disease, or pericardial effusion.

9. Extreme caution should be observed if epidural or caudal anesthesia is to be undertaken in patients in whom intubation difficulties are anticipated. Even after a test dose to exclude an accidental spinal, or vascular penetration, the block should only be established very gradually.

10. The use of cervical epidural analgesia for the treatment of digital vasculitis has been reported.